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In this paper, the stochastic-aeroelastic nonlinear response of a three-degree-of-freedom
(3-DOF) structural nonlinear airfoil with a control flap is presented. The critical parameter
conditions of stochastic P-bifurcation are solved by using the improved average method, the
stochastic average method combined with the singularity theory. The results show that the
periodic solution produced by Hopf bifurcation has involved a second bifurcation, the non-
linear critical speed of saddle node bifurcation points is advanced, and the airfoil appears
bi-stable. The stochastic singularity analysis shows that the increasing stochastic disturbance
intensity will cause a greater probability for a large amplitude stochastic flutter.
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1. Introduction

Structural nonlinearity of the airfoil may lead to complicated nonlinear dynamic behaviour,
such as LCO, periodic doubling bifurcation, chaos, and so on. As present, the LCO and chaos
response of a two-dimensional wing with control surface nonlinearity were studied by Virgin and
Dowell (1992). Conner et al. (1997) investigated theoretically piecewise linear state-space models
for a 3-DOF aero-elastic typical section with control surface freeplay, which was validated by
an experimental model of a 3-DOF typical section in the two-dimensional space. The flutter of
a 3-DOF wing with cubic nonlinear stiffness in incompressible flow was studied by using Hopf
bifurcation theory by Zheng and Yang (2006). The results showed that there was a subcritical
Hopf bifurcation and the flutter critical speed decreased versus the increasing linear stiffness
coefficient. Irani et al. (2011) analyzed a 3-DOF aeroelastic typical section with a trailing-edge
control surface, and the numerical analysis revealed the presence of stable and unstable limit
cycles along with stability reversal in the neighborhood of a Hopf bifurcation. The LCO of two
models of the wing/store with free play in the junction, one of a two-dimensional wing, and the
other a delta wing, were investigated by Yang (1995). The KBM method was used to analyze
the limit cycle flutter of the wing, and also, the results were compared with the wind-tunnel test
results. Other experimental studies of LCO of the airfoil can be found in the works by Dowell
et al. (2004) and Chassaing et al. (2012).
Besides, some scholars introduced higher-order nonlinearity to investigate the multi-stable

characteristics (hard-destabilization) of airfoil flutter. Christiansen et al. (2002) considered two
nonlinear models: an extended normal-form model and a nonlinear version of 2-DOF structural
models. Both models yield the same discovery. The subcritical Hopf bifurcation and the saddle-
-node bifurcation were observed by Poirel and Price (2007). At the interval between these two
bifurcations, the unstable limit cycle represents a separatrix between the equilibrium state and
the fluttering state. Missoum et al. (2010) introduced a methodology for the reliability-based



308 Y. Hao et al.

design optimization of systems with nonlinear aeroelastic constraints. The proposed approach
was applied to the generation of flutter and subcritical LCO boundary finding a 2-DOF airfoil
with a fifth-order nonlinear stiffness. Moreover, Dribusch et al. (2010) also considered the quantic
nonlinearity stiffness when studying the stability boundary of aeroelastic problems. Hao and Wu
(2019, 2020) considered a quintic nonlinearity of the torsional spring, and showed that the pitch-
fork bifurcation occurred.

Current research of airfoil flutter systems under random perturbation is not all-inclusive
yet; few authors have turned their eyes to random perturbation and airfoil multi-stability. In
the 1990s, Poirel and Price (1997, 2003b, 2012), Poirel et al. (2005) and Lee et al. (1999) and
his colleagues pioneered researches on turbulence-induced stochastic flutter by addressing the
existence of stochastic turbulent perturbation in their studies. Poirel and Price (2007) pioneered
the stochastic bifurcation study of the airfoil flutter system by looking at the effects of stochastic
P-bifurcation of a binary airfoil model. Poirel and Price (1997) examined the stability of an
airfoil model with structural nonlinearity in the pitch direction by incorporating the effects of
turbulence into the longitudinal inflow velocity. A fairly complete description of airfoil flutter
with structural or aerodynamic nonlinearity was involved by Lee et al. (1999), and numerically
investigated the effects of longitudinal turbulent perturbation on Hopf bifurcation and airfoil
flutter boundary. Poirel and Price (2003a) addressed the effects of both longitudinal and vertical
turbulence in their airfoil model.

The larger amplitude of LCO flutter induced by subcritical Hopf bifurcation, which occours
before the linear critical flutter speed, may infect flying security, where the jumping of nonlinear
solutions increases the difficulty of traditional optimization design and critical speed prediction.
Since the airfoil flutter system may exhibit secondary bifurcation and multi-steady state due to
high-order structural nonlinearity, in this paper, the high-order quantic structural nonlinearity
is introduced to investigate nonlinear flutter of the 3-DOF airfoil . By combining the numerical
method and the stochastic P-bifurcation analysis for high dimensional systems, the influence of
parameters variation on the linear and nonlinear critical flutter speed is discussed.

2. Equations of motion

Consider a 3-DOF airfoil with a control surface (flap) and a nonlinear torsional spring (Zheng
and Yang, 2006; Irani et al., 2011). The plunging deflection is denoted by h, α is the pitch angle,
and β is the flap angle, positive when the trailing edge surface is moved down. The elastic axis is
located at a distance ahb from the mid-chord, where b is half of the chord. The wing mass center
is located at a distance xαb from the elastic axis. The axis of rotation of the flap is located at
a distance chb from the mid-chord, while the flap mass center is located at a distance xβb from
the flap hinge. All the previous distances are positive when measured towards the flap of the
airfoil.

Based on Theodorsen’s linear aerodynamic model in (Theodorsen, 1935), the aeroelastic
equation of motion for nonlinear torsional springs are originally found by Irani et al. (2011) as
follows

mḧ+ Sαα̈+ Sββ̈ +Khh = L

Sαḧ+ Jαα̈+ [Jβ + b(ch − ah)]β̈ +Kα[k1αα+M(α)] =Mα

Sβḧ+ [Jβ + b(ch − ah)]α̈ + Jββ̈ +Kβ [k1ββ +M(β)] =Mβ

(2.1)

where Kα, Kh, Kβ – linear stiffness coefficients at α, h and β; Sα, Sβ – airfoil static moments
about the elastic axis and the flap hinge; Jα, Jβ – airfoil mass moments of inertia about the
elastic axis and the flap hinge.
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Our study ignored the aerodynamic force, aerodynamic moment acting on the flap, hence
Mβ was not considered (Mβ = 0). M(α) and M(β) are the nonlinear pitch and flap stiffness
terms. For incompressible flow, the governing equations of the airfoil system are established on
quasi-steady aerodynamics. The aerodynamic lift force and the aerodynamic moment are given
by Zheng and Yang (2006)

L = −2πρbQ∗
[

αQ∗ + ḣ+ b
(1

2
− ah
)

α̇
]

Mα = 2πρQ
∗b2
(1

2
+ ah
)[

αQ∗ + ḣ+ b
(1

2
− ah
)

α̇
]

−
1

2
πρQ∗b3α̇

(2.2)

where ρ is mass of the air per unit of volume, Q∗ is generalized flow speed, the stochastic distur-
bance u∗T is considered in Q

∗, we assume that Q∗ = Q∗m + u
∗

T , u
∗

T is the stochastic disturbance.
In the particular case, we only define high order structural nonlinearity in the pitch degree

of freedom (M(α) = k3αα
3 − k5αα

5), where M(β) = 0 and k3α, k5α are nonlinear stiffness
coefficients. Specify the following non-dimensional coefficients by these definitions

ξ =
h

b
xα =

Sα

mb
xβ =

Sβ

mb
ω2h =

Kh

m
ω2α =

Kα

Jα

ω2β =
Kβ

Jβ
r2α =

Jα

mb2
r2β =

Jβ

mb2
u =

m

ρπb2
Qm =

Q∗m
bωα

uT =
u∗T
bωα

ω1 =
ωh

ωα
ω2 =

ωβ

ωα
τ =
Q∗mt

b

where r is the aeroelastic modal amplitude, rα, rβ, rξ amplitude of α, β and ξ.
We obtain the system of ξ, ξ̇, α, α̇, β, β̇, let x1 = ξ, x2 = ξ̇, x3 = α, x4 = α̇, x5 = β, x6 = β̇,

then Eqs. (2.1) could be expressed as

ẋ1 = x2

ẋ2 = a21x1 + a22x2 + a23x3 + a24x4 + a25x5 + a26x6 + a27M(x3)

ẋ3 = x4

ẋ4 = a41x1 + a42x2 + a43x3 + a44x4 + a45x5 + a46x6 + a47M(x3)

ẋ5 = x6

ẋ6 = a61x1 + a62x2 + a63x3 + a64x4 + a65x5 + a66x6 + a67M(x3)

(2.3)

where

a21 =
eω21
Q2m
(b2c3 − b3c2) a22 =

2e
(

1
2 + ah

)

U1

ur2α
(a2c3 − a3c2) +

2eU1
u
(b2c3 − b3c2)

a23 =
2e
(

1
2 + ah

)

U2

ur2α
(a2c3 − a3c2) +

ek1α

Q2m
(a3c2 − a2c3) +

2eU2
u
(b2c3 − b3c2)

a24 =
1

2

eU1

ur2α
(a3c2 − a2c3) +

2e
(

1
2 − ah

)(

1
2 + ah

)

U1

ur2α
(a2c3 − a3c2)

+
2e
(

1
2 − ah

)

U1

u
(b2c3 − b3c2)

a25 =
eω22
Q2m
(a2b3 − a3b2) a26 = 0 a27 =

e

Q2m
(a3c2 − a2c3)

a41 =
eω21
Q2m
(b1c3 − b3c1) a42 =

2e
(

1
2 + ah

)

U1

ur2α
(a1c3 − a3c1) +

2eU1
u
(b1c3 − b3c1)
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a43 =
2e
(

1
2 + ah

)

U2

ur2α
(a1c3 − a3c1) +

ek1α

Q2m
(a3c1 − a1c3) +

2eU2
u
(b1c3 − b3c1)

a44 =
1

2

eU1

ur2α
(a3c1 − a1c3) +

2e
(

1
2 − ah

)(

1
2 + ah

)

U1

ur2α
(a1c3 − a3c1)

+
2e
(

1
2 − ah

)

U1

u
(b1c3 − b3c1)

a45 =
eω22
Q2m
(a1b3 − a3b1) a46 = 0 a47 =

e

Q2m
(a3c1 − a1c3)

a61 =
eω21
Q2m
(b1c2 − b2c1) a62 =

2e
(

1
2 + ah

)

U1

ur2α
(a1c2 − a2c1) +

2eU1
u
(b1c2 − b2c1)

a63 =
2e
(

1
2 + ah
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U2

ur2α
(a1c2 − a2c1) +

ek1α

Q2m
(a2c1 − a1c2) +

2eU2
u
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a64 =
1

2

eU1

ur2α
(a1c1 − a1c2) +

2e
(

1
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1
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U1
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+
2e
(

1
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U1

u
(b1c2 − b2c1)

a65 =
eω22
Q2m
(a1b2 − a2b1) a66 = 0 a67 =

e

Q2m
(a2c1 − a1c2)

e =
1

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1
a1 = 1 a2 = xα a3 = xβ

b1 =
xα

r2α
b2 = 1 b3 = [r

2
β + xβ(ch − ah)]

1

r2α

c1 =
xβ

r2β
c2 = 1 +

xβ

r2β
(ch − ah) c3 = 1

U1 =
Q(τ)

Qm
U2 =

(Q(τ)

Qm

)2

3. Power density distribution of 3-DOF aeroelastic modal amplitude

Equations (2.3) can be expressd as

ẋ = F (x,Qm, τ) (3.1)

here the inflow speed Qm is a bifurcation parameter under which the bifurcation point of
a deterministic system is (x,Qm) = (0, Qm0), and Qm0 is the bifurcation critical point. Let
Qm = Qm0+u. It is defined that the perturbation near the Hopf bifurcation point is u = µ+uT ,
where µ is the introduced small parameter, uT (τ) is the stochastic disturbance. Hence, the
Jacobian matrix concerning perturbation can be expressed as

A(u) = A(0, u, 0) =
∂F

∂x

∣

∣

∣

∣

∣

x=0
Q=Qm0+u
t=0

(3.2)
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Expanding Eq. (3.2) at u = 0, yields A(u) = A0 +DA(u)|u=0u = A0 +A1u, Hence, Eq. (3.1)
can be rewritten as

ẋ = (A0 +A1u)x+ [F (xi, Qm, t)− (A0 +A1u)x] = A0x+Fa(xi, u) (3.3)

where Fa(xi, u) are the quadratic polynomials. Assume that the solution of the derived system
(ẋ = A0x) is

x = G(τ)b (3.4)

where G(τ) = TE(τ) is the fundamental matrix of Eq. (3.1), where E(τ) =
diag (eλ1τ , eλ2τ , eλ3τ , eλ4τ , eλ5τ , eλ6τ ), T = [ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6], and b is a function of τ . λj is
the eigenvalue of Jacobian matrix, λ1, λ2 are the pair of pure imaginary numbers, and the other
four (λ3, . . . , λ6) have negative real parts, ϕj is the eigenvector corresponding to each eigenvalue.

By substituting Eq. (3.4) into Eq. (3.3) from the method of variation of constants, we have

ḃ = G∗(τ)Fa(xi, u)
∣

∣

∣

x=G(τ)b
= H(bi, u, τ) = [H1,H2,H3,H4,H5,H6]

T (3.5)

whereG∗(τ) is the inverse of the fundamental matrix G(τ). Suppose b are functions of τ , which
is convenient to derive the solution in a more familiarized familiar form

b1 = re
iθ b2 = re

−iθ

bi = bi(τ) i = 3, . . . , 6
(3.6)

where r is the aeroelastic modal amplitude, θ is generalized phase-angle.

By making use of the stochastic averaging and modified averaging method (Hao and Wu,
2019, 2020), when τ approaches to infinity, bi = 0 (i = 3, . . . , 6), we obtain the normal equation
by substituting Eq. (3.6) into Eq.(3.5)

ṙ = H1 cos θ +H2 sin θ = Φ(r, θ, u) θ̇ =
−H1 sin θ +H2 cos θ

rj
= Φ∗(r, θ, u) (3.7)

where

Φ(r, θ, u) = −[−1.2788 cos(4.5624τ − 4θ) + 1.1184 sin(2.2812τ − 2θ) + 0.0315

− 0.2518 sin(6.8436τ − 6θ)− 0.1983 cos(6.8436τ − 6θ)− 0.0905 sin(4.5624τ − 4θ)

− 1.1484 cos(2.2812τ − 2θ)]k5αr
5 + [0.3319 sin(2.2812τ − 2θ)− 0.0181 sin(4.5624τ − 4θ)

− 0.3475 cos(2.2812τ − 2θ) + 0.071 − 0.2395 cos(4.5624τ − 4θ)]k3αr
3

+ [0.0005 + 0.6777 cos(2.2812τ − 2θ)− 0.5706 sin(2.2812τ − 2θ)]µr

+ [0.0099 sin(2.2812τ − 2θ)− 0.0114 cos(2.2812τ − 2θ)− 0.0004]µru2T (τ)

+ [0.0121 sin(2.2812τ − 2θ)− 0.0156 cos(2.2812τ − 2θ) + 0.0005]µruT (τ)

Φ∗(r, θ, u) = −[−0.2518 cos(6.8436τ − 6θ) + 3.2046 − 0.1514 cos(4.5624τ − 4θ)

+ 1.9169 sin(4.5624τ − 4θ) + 0.1983 sin(6.8436τ − 6θ) + 3.5304 sin(2.2812τ − 2θ)

+ 3.2625 cos(2.2812τ − 2θ)]k5αr
4 + [0.7046 sin(2.2812τ − 2θ) + 0.7206

+ 0.2395 sin(4.5624τ − 4θ)− 0.1814 cos(4.5624τ − 4θ) + 0.6533 cos(2.2812τ − 2θ)]k3αr
2

+ [−0.8861 − 0.5706 cos(2.2812τ − 2θ)− 0.6777 sin(2.2812τ − 2θ)]µ

+ [0.9902 cos(2.2812τ − 2θ) + 0.11434 sin(2.2812τ − 2θ) + 0.1512]µu2T (τ)

+ [0.1214 cos(2.2812τ − 2θ) + 0.1558sin(2.2812τ − 2θ) + 0.1925]µuT (τ)
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The new normal equation is about r and θ. By substituting G(t) and b into x = G(t)b, we
have the expression of x, where ϕ = 1.1406τ − θ

x =



















ξ

ξ̇

α

α̇

β

β̇



















=



















1.2774r cosϕ+ 0.6538r sinϕ
0.7457r cosϕ− 1.4571r sinϕ
−2.0884r cosϕ− 0.9990r sinϕ
−1.1394r cosϕ+ 2.3821r sinϕ
−1.2614r cosϕ− 0.5714r sinϕ
−0.6518r cosϕ+ 1.4387r sinϕ



















(3.8)

The stochastic average and deterministic average can be utilized in Eqs. (3.7), and we obtain
the following stochastic equations for the aeroelastic modal amplitude r and generalized phase-
-angle θ

dr = [−0.0320k5αr
5 + 0.0072k3αr

3 + (5.4284 · 10−4Dµ2 + 1.7946 · 10−4µ)r] dτ

+
√

3.6238 · 10−4r2µ2DdW1(τ)

dθ = (−3.0853k5αr
4 + 0.6908k3αr

2 − 0.8259µ) dτ +
√

0.0010Dµ2 dW2(τ)

(3.9)

where D is the intensity of stochastic disturbance uT , W1(t) and W2(t) are two independent
Wiener processes. The probability density function p(r, τ) of the instantaneous aeroelastic modal
amplitude r satisfies the FPK equation

∂p(r, τ)

∂t
= −
∂

∂r
{[−0.0320k5αr

5 + 0.0072k3αr
3 + (5.4284 · 10−4Dµ2

+ 1.7946 · 10−4µ)r]p(r, τ)} +
1

2

∂2

∂r2
[3.6238 · 10−4r2µ2Dp(r, τ)]

(3.10)

By solving the FPK equation, we obtain the stationary probability density function

ps(r) = κ
2759.56

µD
r
0.9960+ 0.9905

µD exp
(−3.4494r4 + 3.4494r2

µ2D

)

(3.11)

where κ is the unified coefficient, and the system stationary response ξ, ξ̇, α, α̇, β, β̇ and modal
amplitude are shown in Eq. (3.8).

4. Anlysis of the critical flutter speed

Figure 1 represents bifurcation of the deterministic system, Eq. (2.3), since the high order
nonlinearity term M(α) = k3αα

3 − k5αα
5 exists, which causes the second bifurcation and a bi-

-stable steady state of the system. Here, the solid line, dotted line, blue stars are the equilibrium,
unstable response and the corresponding numerical results, respectively. It can be see that the
analytical solution approaches to the numerical solution by adopting the Runge-Kutta fourth-
-order algorithm.

The main parameter involved in the airfoil flutter is the critical folw speed, which is the
critical value of Qm. In Fig. 1, the critical speed of Hopf bifurcation QH = 1.348 is then de-
fined as the linear critical flutter speed. Moreover, the critical speed of saddle node bifurcation
QA = 0.478 is defined as the nonlinear critical flutter speed. In Fig. 1, it can be seen that the
nonlinear critical flutter speed is less than its linear counterpart. However, in the 3-DOF airfoil
with structural nonlinearity in the pitch degree of freedom, even below the linear flutter speed,
we encounter large amplitude oscillations.
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Fig. 1. Bifurcation plot for the aeroelastic modal amplitude r with u = 100, xα = 0.25, xβ = 0.0125,
rα = 0.5, rβ = 0.079, ω1 = 1.2, ω2 = 3.5, Mβ = 0, M(α) = 0.1746α

3 − 0.0782α5

The linear critical flutter speed QH can be determined by linear stability analysis, whereas
the nonlinear critical flutter speed QA can only be determined by nonlinear analysis. The effects
of high order nonlinearity k3α and k5α in the pitching degree on the the nonlinear critical flutter
speed QA are obtained through the averaging method. From Fig. 2a, it can be seen that with
the increasing k3α in the pitching degree of freedom, the value of the nonlinear critical flutter
speed QA decreases. In addition, the nonlinear critical flutter speed QA increases with a growth
in the value of k5α in the pitching degree of freedom (Fig. 2b).

Fig. 2. The cruve of the nonlinear flutter speed QA varying with: (a) k3α, (b) k5α

5. Stochastic P-bifurcation analysis of the stochastic system

For this non-linear 3-DOF airfoil, we analyze stationary response behavior of the system by
investigating the standard equations of the aeroelastic modality amplitude r and θ. First, the
bifurcation equation is selected as

g(r) = R(r,D, µ) exp[Q(r,D, µ)] − ps(r) = 0 (5.1)

where

R(r,D, µ) =
2759.56

µD
r
0.9960+ 0.9905

µD Q(r,D, µ) =
−3.4494r4 + 3.4494r2

µ2D

The transition set H (hysteresis set) of the non-linear flutter system corresponding to Eq.
(4.1) is solved by using the singularity theory. Types of the transition sets and their calculation
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methods are the same as those in (Hao and Wu, 2019). Here, the aeroelastic modality ampli-
tude r is a state variable; the stationary probability density ps(r) is a bifurcation parameter;
the intensity D of the stochastic disturbance, the perturbation µ of the inflow speed Qm near
the Hopf bifurcation point are unfolding parameters.

Figure 4 shows the transition set profile in (D,Qm). Here, the dotted line is the hysteresis
set H2, and the dot-and-dash line is the hysteresis set H1. The transition sets H1 and H2 divide
the parameter plane (D,Qm) into different regions marked as 1, 2, 3.

Fig. 3. The critical condition of P-bifurcation (transition sets)

Fig. 4. PDF curves of the aeroelastic modal amplitude r for different regions in Fig. 3

Figure 4 shows the stationary PDF of the aeroelastic modal amplitude r yielded at points
selected in different reginons divided by the transition sets (in Fig. 3). Here, the black curve
and the blue asterisked line are theoretical results and Monte Carlo (MC) simulation results,
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respectively. From Fig. 4, it can be see that the theoretical calculations agree well with the
numerical results which we ran with the Monte Carlo simulation with the sample number set
as 106.

The PDF of the aeroelastic modal amplitude r obtained from region 1 (in Fig. 3) of the
(D,Qm) parameter plane is shown in Fig. 4a. No large amplitude vibration can be observed in
this region, the response refers to a zero solution and a steady-state.

An obvious peak appears in the amplitude r in the PDF curve when the parameter set
passes through region 1 to region 2 (in Fig. 3) of the (D,Qm) plane, as shown in Fig. 4b. Large
amplitude vibration can be found, but small amplitude vibration still exists.

With the increase of stochastic intensity D, passing from region 2 to 3 in Fig. 3, the second
stochastic P-bifurcation appears, and only one peak in the PDF curve could be observed. Its
probabilistic curve is shown in Fig. 4c. Large amplitude vibration could be observed on the
airfoil, and it corresponds to the steady responses of the system.

Through the analysis of the transition sets and the bifurcation curves, the steady response
of the system depends on the value of (D,Qm) in the diagram. When (D,Qm) obtained from
region 1 (in Fig. 3), the response behavior appears to be like the balance point in a deterministic
system. With the increasing stochastic intensity D, the parameter set will cross the hysteresis
set H1 or even H2 and reach to region 3 (in Fig. 3). This crossing is the occurrence of stochastic
P-bifurcation. The crossing in this direction is associated with the increasing vibration amplitude
until only one peak occurs in the PDF curve, and the system depicts the LCO flutter similar
as in the deterministic case. When the flow speed is lower than the critical flutter speed, for
instance Qm = 0.25, we can observe the appearance of large amplitude vibrations in the system
with the increase of the intensity D of the stochastic disturbance. Otherwise, the decrease of its
intensity can significantly restrain the behavior of substantial vibration of the airfoil.

In Fig. 5a, slight vibration was located in the steady-state response with the increasing flow
speed Qm for D = 0.6. Another scenario could be observed in Fig. 5b when the (D,Qm) is found
in region 2 (in Fig. 3) as Qm = 1.05. The greater the stochastic intensity D is, the higher peak
in the PDF curve could be observed. Hence, the augmentation of stochastic intensity increases
the probability of the substantial vibration of the system.

Fig. 5. (a) Influence of Qm on PDF curves of the modal amplitude r at D = 0.6, (b) influence of D on
PDF curves of the modal amplitude r at Qm = 1.05

6. Conclusion

In this work, based on the dimensional multi-steady state stochastic P-bifurcation method,
stochastic nonlinear flutter and stochastic P-bifurcation of the multi-stable 3-DOF airfoil in the
steady flow with a stochastic disturbance are studied.
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The high order nonlinearity in the pitching degree of freedom causes the secondary saddle-
-node bifurcation and bi-stable steady states. Meanwhile, large LCO flutter occurs in the system,
and the nonlinear critical flutter speed is shifted earlier comparing the linear critical flutter
speed of the Hopf bifurcation. Furthermore, the nonlinear critical flutter speed decreases with
an invrease of k3α in the pitching degree of freedom, and increases with an increase of k5α in
the pitching degree of freedom. Moreover, the analysis results show that the large amplitude
vibration could still occur along with the increase of the intensity of the stochastic disturbance
when the flow speed is inferior to the critical nonlinear flutter speed.
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